Exclusive χ_c at CDF

Angela Wyatt (UCL)

- Motivation
- Selection of J/ψ events
- Selection of double pomeron exchange
- Selection of exclusive events
- What are the events?
- Summary

Exclusive Higgs production

The Higgs boson has vacuum quantum numbers \Rightarrow could be produced exclusively: $pp \rightarrow pHp$

- → Outgoing protons scattered by a small angle
- → The Higgs decays centrally
- → Large rapidity gaps between the protons and the Higgs

LO QCD: $gg \rightarrow H$ via a t-quark loop plus an additional gluon exchange that cancels colour \Rightarrow colour singlet

Colour singlet exchange (diffraction)

⇒ rapidity gap formed.

Reconstruct Higgs mass from tagging protons

⇒ S/B approx 3

(De Roeck, Khoze, Martin, Orava, Ryskin, Eur. Phys J. C25, 391(2002))

Test predictions with χ_{c} (same quantum nos)

Searching for exclusive χ_c at CDF

- Use the decays: $\chi_{_{\rm C}} \! \! \to \! J/\psi \, \gamma \, \to \mu \mu \gamma$
- Roman pots won't tag \overline{p} for this low mass.
- Use the beam shower counters (BSC) and MiniPlug (MP) to tag diffractive events.
- Search for exclusive events using in addition the main CDF detectors: calorimeters, muon detectors, trackers.

Selection of an inclusive J/ψ sample

- Events are triggered on by a di-muon trigger
- Muons have $P_{t} > 1.5$ GeV, $|\eta| < 0.6$
- Reject cosmic rays with time of flight info.
- Select events in J/ψ mass window.

Rapidity gap selection at CDF

Beam/electronic noise means that exclusive isn't zero signal

⇒ define rapidity gap by a cut at low energy

Used trigger unbiased data to study this choice.

Selection of double pomeron exchange

• Select double pomeron exchange

$$N(BSC \bar{p}) = N(MP\bar{p}) = N(BSC p) = N(MP p) = 0$$

Kinematics of the J/ψ in DPE

- Selected double pomeron exchange (DPE)
- DPE events have a lower $J/\psi P_{t}$
- •Otherwise, very similar to inclusive sample.

Selection of exclusive events

- Start from the DPE sample.
- Ignore the tracks and calorimeter towers of the J/ψ .
- Define events as exclusive if they contain:
 - no muon stubs.
 - no towers Et > 0.1 GeV
 - no tracks
- Allow 1 EM tower in the event.

From 107 DPE events: 13 events just J/ψ 10 events just $J/\psi + \gamma$ and nothing else OBSERVABLE

These 23 events are DEFINED as the exclusive sample. They may not all be truly exclusive.

Number of EM towers before cut:

Exclusive energy distributions

Cosmic background rejection

Events/bin

- Cosmic ray rejection was chosen to reject 100% of cosmic rays.
- Can be a significant background, so we check many variables that no event looks like a cosmic ray.
- Examples are: track opening angle, further timing information, track correlations.

Kinematics of the J/ψ in exclusive events

- 23 events: J/ψ or $J/\psi + \gamma$
- •The J/ ψ has even lower P_t than in DPE, but not zero P_t recoils against outgoing pp
- Again, the other variables look similar.
- Very little continuum backgound.

Are the events from exclusive production?

- Plot M_{J/w}/M_x
- M_y = Mass of all tracks, towers
- You do see a peak, BUT, this mainly shows that the distribution has a low multiplicty.
- Plotting the multiplicity distribution may be less mis-leading.

- N Hits is the total number of tracks+towers.
- Not possible to distinguish between -low multiplicity distribution
- higher multiplicity distribution + additional exclusive events

Are the photons from χ_{c} decay?

- This is very hard to tell.
- The photon E_t is so low in χ_c production that its distribution is very similar to the background.
- \bullet The data distribution is similar to that expected from $\chi_{_{C,0}}$ after detector simulation.
- With 10 events cannot tell the difference between a falling distribution and a mass peak.
- The mass resolution is worse in data. Other χ_c are possible, but may be suppressed.

Invariant mass of all 'exclusive' events

The cosmic background rate is large.

There are exclusive dimuon events that are not J/ψ .

Compare A and C

- photons occur more often in J/ψ events than cosmic events - not noise?

Compare B and D

- photons occur more often in J/ψ mass peak than continuum
- some are really χ ??

A: No cosmic veto.

3.2

B: Cosmic veto added

3.4

Di-muon mass (GeV) Exclusive(1 EM)

3.6

3.8

C: Require 1 EM tower D: Cosmic veto+1 EM tower

Events/bin

4.5

2.5

1.5

0.5

Upper Limit on the Cross section

 \bullet If ASSUME 10 events are all $\chi_{_{\rm C}}^{\ 0}$

• From $\sigma = \frac{N_{evt}}{(L \epsilon_s \epsilon_H A_{j/\psi} \epsilon_{j/\psi} A_{\gamma} \epsilon_{cosmic})}$

 \Rightarrow upper limit of 49 \pm 18 (stat) \pm 39 (syst) pb for exclusive χ_{0} production,

with |y| < 0.6.

• Estimate from Khoze, Martin, Ryskin Eur Phys J. C19, 477(2001) $\sigma \approx 600 \text{ nb}$ (uncertainty factor 2-5) $\sigma J/\psi + \gamma \approx 350 \text{ pb}$ $J/\psi < 0.6 \approx 70 \text{ pb}$

Summary

- We observe DPE events in which there is a J/ ψ or a J/ ψ + γ and nothing else OBSERVABLE in the detector (defined as exclusive events).
- All of these events may be explained by standard DPE models, IF the multiplicity in DPE is low.
- Currently, the statistics/detector understanding don't allow us to make a serious estimate of the DPE contribution to the exclusive events (it could be 0-100%) or of the background contribution to the photons.
- There are 10 events which are compatible with exclusive χ_c production and we use these to give an upper limit and hope to improve this later when we have a better handle on the multiplicity and backgrounds.
- While the results are currently ambiguous, with more data and better understanding of the detector and Monte Carlo models we will be able to learn more.